Group decision-making is becoming increasingly common in areas such as education, dining, travel, and finance, where collaborative choices must balance diverse individual preferences. While conventional recommender systems are effective in personalization, they fall short in group settings due to their inability to manage conflicting preferences, contextual factors, and multiple evaluation criteria. This study presents the development of a Context-Aware Multi-Criteria Group Recommender System (CA-MCGRS) designed to address these challenges by integrating contextual factors and multiple criteria to enhance recommendation accuracy. By leveraging a Multi-Head Attention mechanism, our model dynamically weighs the importance of different features. Experiments conducted on an educational dataset with varied ratings and contextual variables demonstrate that CA-MCGRS consistently outperforms other approaches across four scenarios. Our findings underscore the importance of incorporating context and multi-criteria evaluations to improve group recommendations, offering valuable insights for developing more effective group recommender systems.
翻译:暂无翻译