We present an approach to learn dense, continuous 2D-3D correspondence distributions over the surface of objects from data with no prior knowledge of visual ambiguities like symmetry. We also present a new method for 6D pose estimation of rigid objects using the learnt distributions to sample, score and refine pose hypotheses. The correspondence distributions are learnt with a contrastive loss, represented in object-specific latent spaces by an encoder-decoder query model and a small fully connected key model. Our method is unsupervised with respect to visual ambiguities, yet we show that the query- and key models learn to represent accurate multi-modal surface distributions. Our pose estimation method improves the state-of-the-art significantly on the comprehensive BOP Challenge, trained purely on synthetic data, even compared with methods trained on real data. The project site is at https://surfemb.github.io/ .
翻译:我们提出一种方法,从先前不熟悉对称等视觉模糊性的数据中学习物体表面的密集、连续的 2D-3D 通信分布; 我们还提出一种6D 新方法,利用所学的分布到样本、分数和精细的假说来估计僵硬物体; 通信分布是用对比性损失来学习的,以编码器脱coder查询模型和一个完全连接的小型关键模型代表特定物体的潜在空间; 我们的方法在视觉模糊性方面不受监督,但我们显示,查询和关键模型学会了准确的多式表面分布; 我们的方位估计方法大大改进了在全面BOP挑战方面的最先进的工艺,纯粹在合成数据方面受过培训,即使与实际数据培训的方法相比也是如此。 这个项目的网址是 https://surfemb.github.io/ 。