Generalizing the medical image segmentation algorithms tounseen domains is an important research topic for computer-aided diagnosis and surgery. Most existing methods requirea fully labeled dataset in each source domain. Although (Liuet al. 2021b) developed a semi-supervised domain general-ized method, it still requires the domain labels. This paperpresents a novel confidence-aware cross pseudo supervisionalgorithm for semi-supervised domain generalized medicalimage segmentation. The main goal is to enhance the pseudolabel quality for unlabeled images from unknown distribu-tions. To achieve it, we perform the Fourier transformationto learn low-level statistic information across domains andaugment the images to incorporate cross-domain information.With these augmentations as perturbations, we feed the inputto a confidence-aware cross pseudo supervision network tomeasure the variance of pseudo labels and regularize the net-work to learn with more confident pseudo labels. Our methodsets new records on public datasets,i.e., M&Ms and SCGM.Notably, without using domain labels, our method surpassesthe prior art that even uses domain labels by 11.67% on Diceon M&Ms dataset with 2% labeled data. Code will be avail-able after the conference.
翻译:将医疗图像分解算法普及到unseen 域是计算机辅助诊断和外科手术的一个重要研究课题。 多数现有方法都需要在每个源域内有一个完全贴上标签的数据集。 虽然( Liuet al. 2021b) 开发了半监督域域通用方法, 但仍需要域名标签。 本文展示了一个新的半监督域通用医学全貌分割法的具有信任意识的跨伪监督参数。 主要目标是提高来自未知分布式的未贴标签图像的假标签质量。 为了实现这一点, 我们进行了 Fourier 转换, 以学习跨域的低级别统计信息, 并提示图像纳入跨域信息。 由于这些增强功能, 仍然需要域名标签。 我们将输入到一个具有信任意识的交叉假标签网络, 以测量伪标签的差异, 并规范网络工作, 以更有信心的假标签方式学习。 我们的方法在公共数据集、 e. M & MM 和 SCGM. 11 上的新记录。 值得注意的是, 没有使用域名标签, 我们的域域名标签将使用之前的域名数据。