This article introduces a new instrumental variable approach for estimating unknown population parameters with data having nonrandom missing values. With coarse and discrete instruments, Shao and Wang (2016) proposed a semiparametric method that uses the added information to identify the tilting parameter from the missing data propensity model. A naive application of this idea to continuous instruments through arbitrary discretizations is apt to be inefficient, and maybe questionable in some settings. We propose a nonparametric method not requiring arbitrary discretizations but involves scanning over continuous dichotomizations of the instrument; and combining scan statistics to estimate the unknown parameters via weighted integration. We establish the asymptotic normality of the proposed integrated estimator and that of the underlying scan processes uniformly across the instrument sample space. Simulation studies and the analysis of a real data set demonstrate the gains of the methodology over procedures that rely either on arbitrary discretizations or moments of the instrument.


翻译:本条引入了一种新的工具变量方法,用非随机缺失值的数据来估计未知人口参数。用粗糙和离散的仪器,Shao和Wang(Wang)提出了一种半参数方法,利用所增加的信息从缺失的数据偏向模型中确定倾斜参数。通过任意离散对连续仪器天真地应用这一想法可能效率不高,在某些情况下可能值得怀疑。我们提出了一种非参数方法,不要求任意离散,但涉及对仪器的连续分解进行扫描;将扫描统计数据结合起来,通过加权集成来估计未知参数。我们确定了拟议的综合估计器和整个仪器样本空间基本扫描过程的无症状常态性。模拟研究和对真实数据集的分析表明该方法对依赖任意离散或仪器时刻的程序的收益。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
43+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月24日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员