$f$-DP has recently been proposed as a generalization of differential privacy allowing a lossless analysis of composition, post-processing, and privacy amplification via subsampling. In the setting of $f$-DP, we propose the concept of a canonical noise distribution (CND), the first mechanism designed for an arbitrary $f$-DP guarantee. The notion of CND captures whether an additive privacy mechanism perfectly matches the privacy guarantee of a given $f$. We prove that a CND always exists, and give a construction that produces a CND for any $f$. We show that private hypothesis tests are intimately related to CNDs, allowing for the release of private $p$-values at no additional privacy cost as well as the construction of uniformly most powerful (UMP) tests for binary data, within the general $f$-DP framework. We apply our techniques to the problem of difference of proportions testing, and construct a UMP unbiased (UMPU) "semi-private" test which upper bounds the performance of any $f$-DP test. Using this as a benchmark we propose a private test, based on the inversion of characteristic functions, which allows for optimal inference for the two population parameters and is nearly as powerful as the semi-private UMPU. When specialized to the case of $(\epsilon,0)$-DP, we show empirically that our proposed test is more powerful than any $(\epsilon/\sqrt 2)$-DP test and has more accurate type I errors than the classic normal approximation test.


翻译:最近有人提议,美元-DP是将不同隐私的笼统化,以便通过抽样抽样对构成、后处理和隐私的扩大进行无损分析。在设定美元-DP时,我们提议采用“卡通噪音分配”的概念,这是专为美元-DP保障设计的首个机制。CND的概念反映了添加式隐私机制是否完全符合给定美元隐私保障。我们证明,CND始终存在,并且为任何美元-DP测试制作出一个CND。我们表明,私人假设测试与CND密切相关,允许以不增加的隐私成本释放私人P$-价值,以及在一般美元-DP框架内为二元数据构建统一最强的(UMP)测试。我们运用我们的技术解决了比例测试的差别问题,并构建了一个“半私人”测试,该测试比任何美元-DP测试的性能都高。我们用这个基准来衡量私人假设值的私人价值-美元-美元-美元-美元-美元-美元-美元-价值的正常测试比我们提出的标准中最精准的测试值-我们提出的标准是,在标准2年中,最精准的测试标准值-测试中,使我们的数值-测试值-比标准-实验性测试的数值-比标准的数值-实验值-测试的数值-比标准的数值-比标准的数值-测试的精确值-比的数值-我们为2的精确值-我们为最精准的数值-测试的数值-比的数值-我们的数值-实验性试验的数值-检验的数值-比的数值-实验性测试的数值-测试的数值-比的精确性试验的数值-比的数值-比的精确性测试的精确性测试的精确性判的精确性判的数值-比的精确性试验的数值-比的数值-我们提议的数值-比的数值-比的精确的数值-实验性试验的精确性试验的数值-试验的数值-比的精确的精确性试验的精确性试验的精确性判的精确性判的精确性判的精确性判的数值的数值的数值的数值的数值的数值的数值的数值的数值-比的精确性)的精确的数值-比的数值-比的数值的数值-比的数值-比的数值-比的精确性)的精确性)的精确的精确的精确的精确的

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月8日
Arxiv
14+阅读 · 2022年5月6日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员