In many real-world prediction tasks, class labels contain information about the relative order between labels that are not captured by commonly used loss functions such as multicategory cross-entropy. Recently, the preference for unimodal distributions in the output space has been incorporated into models and loss functions to account for such ordering information. However, current approaches rely on heuristics that lack a theoretical foundation. Here, we propose two new approaches to incorporate the preference for unimodal distributions into the predictive model. We analyse the set of unimodal distributions in the probability simplex and establish fundamental properties. We then propose a new architecture that imposes unimodal distributions and a new loss term that relies on the notion of projection in a set to promote unimodality. Experiments show the new architecture achieves top-2 performance, while the proposed new loss term is very competitive while maintaining high unimodality.


翻译:在许多真实世界的预测任务中,类类标签包含关于通常使用的损失函数(如多类跨物种类)所没有捕获的标签之间的相对顺序的信息。最近,在模型和损失函数中纳入了对产出空间单式分布的偏好,以说明这类定购信息。然而,目前的方法依赖缺乏理论基础的超自然理论。在这里,我们提出了两种新办法,将单式分布的偏好纳入预测模型。我们分析了概率简单x中的一套单式分布,并建立了基本属性。我们随后提出了一种新结构,强制采用单式分布,并提出了一个新的损失术语,该术语依赖于一套促进单式分布的预测概念。实验显示新结构取得了顶层2的性能,而拟议的新损失术语在保持高的单式特性的同时具有很强的竞争力。</s>

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月28日
Arxiv
0+阅读 · 2023年4月26日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员