Deployed machine learning models are confronted with the problem of changing data over time, a phenomenon also called concept drift. While existing approaches of concept drift detection already show convincing results, they require true labels as a prerequisite for successful drift detection. Especially in many real-world application scenarios-like the ones covered in this work-true labels are scarce, and their acquisition is expensive. Therefore, we introduce a new algorithm for drift detection, Uncertainty Drift Detection (UDD), which is able to detect drifts without access to true labels. Our approach is based on the uncertainty estimates provided by a deep neural network in combination with Monte Carlo Dropout. Structural changes over time are detected by applying the ADWIN technique on the uncertainty estimates, and detected drifts trigger a retraining of the prediction model. In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model rather than detecting change on the input data only (which can lead to unnecessary retrainings). We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.


翻译:尽管现有的概念漂移探测方法已经显示出令人信服的结果,但它们需要真实的标签作为成功漂移探测的先决条件。 特别是在许多真实世界应用的情景中,这种工作真实标签所覆盖的情景是稀缺的,而且获取成本很高。 因此,我们引入了新的漂移探测算法,即不确定性漂移探测(UDDD),它能够探测漂移,而不能找到真实标签。 我们的方法是基于与Monte Carlo Drompout一起的深层神经网络提供的不确定性估计。 将ADWIN技术应用于不确定性估计,从而探测出长期的结构变化触发了预测模型的再演化。 与基于数据的漂移探测相比,我们的方法是考虑当前输入数据数据对预测模型特性的影响,而不是仅仅探测输入数据的变化(这可能导致不必要的再培训 ) 。 我们显示, UDDD在两个合成和十个真实世界数据组的回归和分类任务上都超越了其他状态战略。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员