Graph Neural Networks (GNNs) are proposed without considering the agnostic distribution shifts between training and testing graphs, inducing the degeneration of the generalization ability of GNNs on Out-Of-Distribution (OOD) settings. The fundamental reason for such degeneration is that most GNNs are developed based on the I.I.D hypothesis. In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation. However, such spurious correlations may change in testing environments, leading to the failure of GNNs. Therefore, eliminating the impact of spurious correlations is crucial for stable GNNs. To this end, we propose a general causal representation framework, called StableGNN. The main idea is to extract high-level representations from graph data first and resort to the distinguishing ability of causal inference to help the model get rid of spurious correlations. Particularly, we exploit a graph pooling layer to extract subgraph-based representations as high-level representations. Furthermore, we propose a causal variable distinguishing regularizer to correct the biased training distribution. Hence, GNNs would concentrate more on the stable correlations. Extensive experiments on both synthetic and real-world OOD graph datasets well verify the effectiveness, flexibility and interpretability of the proposed framework.


翻译:建议的神经网络(GNNs)没有考虑培训和测试图表之间的不可知分布变化,从而导致GNNs关于外向分配(OOOD)设置的普遍化能力退化。这种退化的根本原因是,大多数GNNs是根据I.I.D假设开发的。在这种背景下,GNNs往往利用一套预测培训中存在的微妙的统计相关性,尽管这是一种虚假的关联。然而,这种虚假的相关性可能会在测试环境中发生变化,导致GNNs的失败。因此,消除假相关系的影响对于GNNs的稳定GNs来说至关重要。为此,我们提议了一个总的因果代表框架,称为StablGNN。 其主要想法是从图形数据中提取高层次的表示,并首先利用因果推断能力来帮助模型消除虚假的关联。特别是,我们利用一个图形集合层来提取基于子图的演示,作为高层次的演示。此外,我们提议一个因果变量来区分虚假的对应关系,以校正的定期性分析常规性来纠正O型数据的真实性。因此,对GNNS的模型进行更精确的模型的模拟分析。

1
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
123+阅读 · 2021年6月4日
【AAAI2021】记忆门控循环网络
专知会员服务
47+阅读 · 2020年12月28日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
30+阅读 · 2020年4月15日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月24日
Arxiv
4+阅读 · 2020年9月28日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
123+阅读 · 2021年6月4日
【AAAI2021】记忆门控循环网络
专知会员服务
47+阅读 · 2020年12月28日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
30+阅读 · 2020年4月15日
相关资讯
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2022年1月24日
Arxiv
4+阅读 · 2020年9月28日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
6+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员