Explainability of graph neural networks (GNNs) aims to answer ``Why the GNN made a certain prediction?'', which is crucial to interpret the model prediction. The feature attribution framework distributes a GNN's prediction to its input features (e.g., edges), identifying an influential subgraph as the explanation. When evaluating the explanation (i.e., subgraph importance), a standard way is to audit the model prediction based on the subgraph solely. However, we argue that a distribution shift exists between the full graph and the subgraph, causing the out-of-distribution problem. Furthermore, with an in-depth causal analysis, we find the OOD effect acts as the confounder, which brings spurious associations between the subgraph importance and model prediction, making the evaluation less reliable. In this work, we propose Deconfounded Subgraph Evaluation (DSE) which assesses the causal effect of an explanatory subgraph on the model prediction. While the distribution shift is generally intractable, we employ the front-door adjustment and introduce a surrogate variable of the subgraphs. Specifically, we devise a generative model to generate the plausible surrogates that conform to the data distribution, thus approaching the unbiased estimation of subgraph importance. Empirical results demonstrate the effectiveness of DSE in terms of explanation fidelity.


翻译:图形神经网络(GNN)的可解释性旨在回答“为什么GNN做了某种预测?”,这是解释模型预测的关键。特征归属框架将GNN的预测散布到其输入特征(例如边缘),确定有影响力的子图作为解释。在评价解释(即子线重要性)时,标准的方法是审计仅以子图为基础的模型预测。然而,我们争辩说,完整的图形和子图之间存在分布变化,造成分配问题。此外,通过深入的因果关系分析,我们发现OOOD效应是混结者,这在子图重要性和模型预测之间带来虚假的联系,使评价更不那么可靠。在这项工作中,我们提议“无根据的子图评估”评估模型预测的解释性子图的因果关系。虽然分布变化一般难以控制,但我们采用前门调整,并引入子图的替代变量。具体地说,我们设计了OODD效应影响模型的遗传模型,在子图重要性和模型预测性分析中产生真实性分析结果的重要性。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Saliency in Augmented Reality
Arxiv
1+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员