Tensor networks have a gauge degree of freedom on the virtual degrees of freedom that are contracted. A canonical form is a choice of fixing this degree of freedom. For matrix product states, choosing a canonical form is a powerful tool, both for theoretical and numerical purposes. On the other hand, for tensor networks in dimension two or greater there is only limited understanding of the gauge symmetry. Here we introduce a new canonical form, the minimal canonical form, which applies to projected entangled pair states (PEPS) in any dimension, and prove a corresponding fundamental theorem. Already for matrix product states this gives a new canonical form, while in higher dimensions it is the first rigorous definition of a canonical form valid for any choice of tensor. We show that two tensors have the same minimal canonical forms if and only if they are gauge equivalent up to taking limits; moreover, this is the case if and only if they give the same quantum state for any geometry. In particular, this implies that the latter problem is decidable - in contrast to the well-known undecidability for PEPS on grids. We also provide rigorous algorithms for computing minimal canonical forms. To achieve this we draw on geometric invariant theory and recent progress in theoretical computer science in non-commutative group optimization.
翻译:线性网络在虚拟自由水平上有一定的自由度。 一种典型形式是确定这种自由度的一种选择。 对于矩阵产品国来说, 选择一种卡度形式是一种强大的工具, 无论是理论还是数字目的。 另一方面, 尺寸为2或以上的高温网络对测量对称度理解有限。 在这里, 我们引入一种新的卡度形式, 即最小的卡度形式, 适用于任何层面的预测缠绕对配国, 并证明是相应的基本理论。 对于矩阵产品来说, 已经表示这提供了一种新的卡度形式, 而对于任何选择 Exmor 而言, 选择一种卡度形式是一个强有力的工具。 我们显示, 两种高压者具有同样的最起码的卡度形式, 如果它们能测量到与取量值相当的话; 此外, 如果它们给任何几何度都赋予同样的量性状态, 情况就是如此。 特别是, 后一种问题是可调的, 与人们熟知的不可分化的科学形式不同, 而在更高层面, 我们的PEPS的理论性矩阵中, 也可以在最起码的模型化的电算式系统中, 。