In this paper, we focus on the theoretical analysis of diffusion-based generative modeling. Under an $L^2$-accurate score estimator, we provide convergence guarantees with polynomial complexity for any data distribution with second-order moment, by either employing an early stopping technique or assuming smoothness condition on the score function of the data distribution. Our result does not rely on any log-concavity or functional inequality assumption and has a logarithmic dependence on the smoothness. In particular, we show that under only a finite second moment condition, approximating the following in KL divergence in $\epsilon$-accuracy can be done in $\tilde O\left(\frac{d^2 \log^2 (1/\delta)}{\epsilon^2}\right)$ steps: 1) the variance-$\delta$ Gaussian perturbation of any data distribution; 2) data distributions with $1/\delta$-smooth score functions. Our theoretical analysis also provides quantitative comparison between different discrete approximations and may guide the choice of discretization points in practice.
翻译:在本文中, 我们侧重于对基于扩散的基因模型的理论分析。 在 $L $2$- 准确的分数估计仪下, 我们通过使用早期停止技术或假设数据分布的分数的平滑性条件, 以二阶时段为任何数据分布提供具有多元复杂性的聚合保证。 我们的结果并不依赖于任何日志- 共性或功能不平等假设, 并且对任何数据分布的顺畅性具有对数值的依赖性。 特别是, 我们显示, 在有限的第二秒条件下, 可以在 $\ eplon$- 准确度的 KL 差差值中以 $\ epleft (\\ frac{ d ⁇ 2\ log% 2 (1/\ delta) unsilon2\\\\\\ right) 步骤中进行以下的匹配保证。 我们的理论分析还提供不同离散近点之间的定量比较, 并可能指导离子化点的选择 。