Tensor Networks (TN) are approximations of high-dimensional tensors designed to represent locally entangled quantum many-body systems efficiently. This study provides a comprehensive comparison between classical TNs and TN-inspired quantum circuits in the context of Machine Learning on highly complex, simulated LHC data. We show that classical TNs require exponentially large bond dimensions and higher Hilbert-space mapping to perform comparably to their quantum counterparts. While such an expansion in the dimensionality allows better performance, we observe that, with increased dimensionality, classical TNs lead to a highly flat loss landscape, rendering the usage of gradient-based optimization methods highly challenging. Furthermore, by employing quantitative metrics, such as the Fisher information and effective dimensions, we show that classical TNs require a more extensive training sample to represent the data as efficiently as TN-inspired quantum circuits. We also engage with the idea of hybrid classical-quantum TNs and show possible architectures to employ a larger phase-space from the data. We offer our results using three main TN ansatz: Tree Tensor Networks, Matrix Product States, and Multi-scale Entanglement Renormalisation Ansatz.
翻译:电离层网络(TN)是高维的强压器近似值,旨在高效地代表本地缠绕的量子体系统。本研究结合机械学习的高度复杂、模拟的LHC数据,对古典TN和由TN启发的量子电路进行了全面比较。我们显示,古典TN需要指数大的债券维度和较高的Hilbert-空间测绘,才能与量子电路相匹配。虽然在维度的这种扩展可以提高性能,但我们观察到,随着维度的增加,古典TN导致高度平坦的损失景观,使梯度优化方法的使用具有高度挑战性。此外,我们采用诸如渔业信息和有效维度等定量指标,我们表明,古典TN需要更广泛的培训样本,以高效的方式代表数据,作为TN激励的量子电路。我们还参与混合的古典-量TNTN的构想,并展示从数据中利用较大级空间的可能结构。我们用三种主要TNAN antzz(树型) Andal Andalian Andalizationsions、 Matslationslationslations、Mestalmentalmentationslationsations、Mormodustrations、Mlationsationslations、MMMuldalmentalmentalmentalmental和MMMMlations) 和MMMMulations和Restrationsalmentalmentalmentalmentalmentalmentalments和MMMMismodalmentalments)提供我们的成果。我们提供了三种主要的模型。我们用三种主要的模型。我们用三种主要的模型提供三种主要的模型式的模型。