Responsible AI has risen to the forefront of the AI research community. As neural network-based learning algorithms continue to permeate real-world applications, the field of Responsible AI has played a large role in ensuring that such systems maintain a high-level of human-compatibility. Despite this progress, the state of the art in Responsible AI has ignored one crucial point: human problems are multi-agent problems. Predominant approaches largely consider the performance of a single AI system in isolation, but human problems are, by their very nature, multi-agent. From driving in traffic to negotiating economic policy, human problem-solving involves interaction and the interplay of the actions and motives of multiple individuals. This dissertation develops the study of responsible emergent multi-agent behavior, illustrating how researchers and practitioners can better understand and shape multi-agent learning with respect to three pillars of Responsible AI: interpretability, fairness, and robustness. First, I investigate multi-agent interpretability, presenting novel techniques for understanding emergent multi-agent behavior at multiple levels of granularity. With respect to low-level interpretability, I examine the extent to which implicit communication emerges as an aid to coordination in multi-agent populations. I introduce a novel curriculum-driven method for learning high-performing policies in difficult, sparse reward environments and show through a measure of position-based social influence that multi-agent teams that learn sophisticated coordination strategies exchange significantly more information through implicit signals than lesser-coordinated agents. Then, at a high-level, I study concept-based interpretability in the context of multi-agent learning. I propose a novel method for learning intrinsically interpretable, concept-based policies and show that it enables...


翻译:暂无翻译

0
下载
关闭预览

相关内容

负责任的人工智能是需要相关组织设立人工智能使用的标准。首先,人工智能的使用应该在各方面符合道德和法规;其次,从开发到使用需要有一套健全的管理机制;第三,需要强有力的监管机制来确保其使用时的公平公正、通俗易懂、安全稳定。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
18+阅读 · 2021年6月10日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
14+阅读 · 2019年11月26日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
18+阅读 · 2021年6月10日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
14+阅读 · 2019年11月26日
A Multi-Objective Deep Reinforcement Learning Framework
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员