A Query-By-Humming (QBH) system constitutes a particular case of music information retrieval where the input is a user-hummed melody and the output is the original song which contains that melody. A typical QBH system consists of melody extraction and candidate melody retrieval. For melody extraction, accurate note transcription is the key enabling technology. However, current transcription methods are unable to definitively capture the melody and address inaccuracies in user-hummed queries. In this paper, we incorporate Total Variation Regularization (TVR) to denoise queries. This approach accounts for user error in humming without loss of meaningful data and reliably captures the underlying melody. For candidate melody retrieval, we employ a deep learning approach to time series classification using a Fully Convolutional Neural Network. The trained network classifies the incoming query as belonging to one of the target songs. For our experiments, we use Roger Jang's MIR-QBSH dataset which is the standard MIREX dataset. We demonstrate that inclusion of TVR denoised queries in the training set enhances the overall accuracy of the system to 93% which is higher than other state-of-the-art QBH systems.
翻译:Query- By- Humming (QBH) 系统构成音乐信息检索的一个特定实例, 输入的内容是一个用户- 组合旋律, 输出是包含旋律的原始歌曲。 典型的 QBH 系统由旋律提取和候选旋律检索组成。 对于旋律提取, 准确的注释转录是关键的赋能技术 。 然而, 当前转录方法无法明确捕捉旋律, 并解决用户- 组合查询中的不准确性 。 在本文中, 我们将全部变换常规化( TVR) 纳入隐性查询。 这个方法将用户在不丢失有意义的数据并可靠地捕捉基本旋律中的错误计算在内。 对于候选旋律检索, 我们使用一种深层次的学习方法, 使用完全革命神经网络进行时间序列分类 。 受过训练的网络将收到的查询归为属于目标歌曲之一。 我们的实验用 Roger Jang 的 MIR- QBSH 数据集, 这是标准的 MIREX 数据集 。 我们证明, 将TVR- denoiz化的查询系统比其他系统更精确性系统要加强其他系统。