This study investigates a strongly-coupled system of partial differential equations (PDE) governing heat transfer in a copper rod, longitudinal vibrations, and total charge accumulation at electrodes within a magnetizable piezoelectric beam. Conducted within the transmission line framework, the analysis reveals profound interactions between traveling electromagnetic and mechanical waves in magnetizable piezoelectric beams, despite disparities in their velocities. Findings suggest that in the open-loop scenario, the interaction of heat and beam dynamics lacks exponential stability solely considering thermal effects. To confront this challenge, two types of boundary-type state feedback controllers are proposed: (i) employing static feedback controllers entirely and (ii) adopting a hybrid approach wherein the electrical controller dynamically enhances system dynamics. In both cases, solutions of the PDE systems demonstrate exponential stability through meticulously formulated Lyapunov functions with diverse multipliers. The proposed proof technique establishes a robust foundation for demonstrating the exponential stability of Finite-Difference-based model reductions as the discretization parameter approaches zero.
翻译:暂无翻译