Non-negative matrix factorisation (NMF) has been widely used to address the problem of corrupted data in images. The standard NMF algorithm minimises the Euclidean distance between the data matrix and the factorised approximation. Although this method has demonstrated good results, because it employs the squared error of each data point, the standard NMF algorithm is sensitive to outliers. In this paper, we theoretically analyse the robustness of the standard NMF, HCNMF and L2,1-NMF algorithms, and implement sets of experiments to show the robustness on real datasets, namely ORL and Extended YaleB. Our work demonstrates that different amounts of iterations are required for each algorithm to converge. Given the high computational complexity of these algorithms, our final models such as HCNMF and L2,1-NMF model do not successfully converge within the iteration parameters of this paper. Nevertheless, the experimental results still demonstrate the robustness of the aforementioned algorithms to some extent.
翻译:非负矩阵因子化(NMF)已被广泛用于解决图像中数据腐败问题。标准NMF算法将数据矩阵和因子近似值之间的欧几里特距离最小化。虽然这一方法显示了良好的结果,因为它使用了每个数据点的方差,标准NMF算法对外部线十分敏感。在本文中,我们从理论上分析了标准NMF、HCNMF和L2、1-NMF算法的稳健性,并实施了一系列实验,以显示真实数据集的稳健性,即ORL和扩展的耶鲁B。我们的工作表明,每种算法都需要不同数量的迭代数才能趋同。鉴于这些算法的计算复杂性很高,我们的最后模型,如HCNMF和L2、1-NMF模型,并没有成功地在本文的循环参数内汇合。然而,实验结果仍然在某种程度上证明上述算法的稳健性。