Underwater image enhancement has attracted much attention due to the rise of marine resource development in recent years. Benefit from the powerful representation capabilities of Convolution Neural Networks(CNNs), multiple underwater image enhancement algorithms based on CNNs have been proposed in the last few years. However, almost all of these algorithms employ RGB color space setting, which is insensitive to image properties such as luminance and saturation. To address this problem, we proposed Underwater Image Enhancement Convolution Neural Network using 2 Color Space (UICE^2-Net) that efficiently and effectively integrate both RGB Color Space and HSV Color Space in one single CNN. To our best knowledge, this method is the first to use HSV color space for underwater image enhancement based on deep learning. UIEC^2-Net is an end-to-end trainable network, consisting of three blocks as follow: a RGB pixel-level block implements fundamental operations such as denoising and removing color cast, a HSV global-adjust block for globally adjusting underwater image luminance, color and saturation by adopting a novel neural curve layer, and an attention map block for combining the advantages of RGB and HSV block output images by distributing weight to each pixel. Experimental results on synthetic and real-world underwater images show the good performance of our proposed method in both subjective comparisons and objective metrics.


翻译:由于近年来海洋资源开发的兴起,水下图像的增强引起了人们的极大关注。受益于Convolution Neal 网络(CNN)的强大代表能力,过去几年中提出了基于CNN的多种水下图像增强算法。然而,几乎所有这些算法都采用了RGB颜色空间设置,对光度和饱和度等图像属性不敏感。为了解决这一问题,我们提议利用2个彩色空间(UICE2Net),将RGB色彩空间和HSV色彩空间高效和有效地纳入一个CNN。据我们所知,这种方法是首先利用HSV色彩空间在深层学习的基础上增强水下图像。UIEC2-Net是一个端对端可训练的网络,由以下三个部分组成:RGB像素级块实施基本操作,例如解析和去除颜色,HSV全球主观调整水下图像的亮度、色度和饱和度。通过采用新型的银度曲线曲线层进行全球比较,这是第一个使用HSV彩度空间的颜色空间,并且通过将每块的图像的图像的精确度和精确度图像的图像的图像的焦度分布展示,将每个图像的焦度与焦度转化为的图像的图像的图像的图像的图像的焦度与焦度与焦度的焦度组合,以显示的焦度的焦度的焦度的焦度的焦度组合,以显示的焦度的焦度的焦度的焦度的焦度的焦度的焦度的焦度的焦度的焦度的焦度组合的焦度向向向显示。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
47+阅读 · 2020年7月4日
专知会员服务
49+阅读 · 2020年6月14日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于深度学习的图像目标检测(下)
机器学习研究会
12+阅读 · 2018年1月1日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年7月16日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于深度学习的图像目标检测(下)
机器学习研究会
12+阅读 · 2018年1月1日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员