This paper formalizes constraint-based structure learning of the "true" causal graph from observed data when unobserved variables are also existent. We provide conditions for a "natural" family of constraint-based structure-learning algorithms that output graphs that are Markov equivalent to the causal graph. Under the faithfulness assumption, this natural family contains all exact structure-learning algorithms. More importantly, we provide clear and testable assumptions, as an alternative to faithfulness, under which any natural structure-learning algorithm outputs Markov equivalent graphs to the causal graph. We provide these definitions and results for the general class of models under the assumption that the distribution is Markovian to the true causal graph, and we specialize the definitions and results for structural causal models.
翻译:本文将“ 真正的” 因果图从观察到的数据中学习的制约性结构正式化。 当未观测到的变量也存在时, 我们为“ 自然” 的基于约束性的结构学习算法提供了条件, 其输出的图表相当于因果图。 根据忠诚性假设, 这个自然家庭包含所有精确的结构学习算法。 更重要的是, 我们提供了明确和可测试的假设, 以替代忠诚性, 根据该假设, 任何自然结构- 学习因果算法输出的与因果图等值的图表。 我们为一般类型的模型提供了这些定义和结果, 前提是分布是 Markovian 到真正的因果图, 我们专门为结构性因果模型定义和结果。