There is much recent interest in techniques to accelerate the data acquisition process in MRI by acquiring limited measurements. Often sophisticated reconstruction algorithms are deployed to maintain high image quality in such settings. In this work, we propose a data-driven sampler using a convolutional neural network, MNet, to provide object-specific sampling patterns adaptive to each scanned object. The network observes very limited low-frequency k-space data for each object and rapidly predicts the desired undersampling pattern in one go that achieves high image reconstruction quality. We propose an accompanying alternating-type training framework with a mask-backward procedure that efficiently generates training labels for the sampler network and jointly trains an image reconstruction network. Experimental results on the fastMRI knee dataset demonstrate the ability of the proposed learned undersampling network to generate object-specific masks at fourfold and eightfold acceleration that achieve superior image reconstruction performance than several existing schemes. The source code for the proposed joint sampling and reconstruction learning framework is available at https://github.com/zhishenhuang/mri.


翻译:最近人们非常关心通过获得有限的测量来加快磁共振成像过程的获取数据过程的技术。通常会采用复杂的重建算法来保持这类环境中的高图像质量。在这项工作中,我们提议使用一个脉动神经网络MNet来提供数据驱动取样器,以提供适合每个扫描物体的物体特定取样模式。网络观察到每个物体的低频K-空间数据非常有限,并迅速预测一个方向的预期低位抽样模式,从而达到高图像重建质量。我们提议了一个伴有掩罩后后程序、为取样网络有效生成培训标签并联合培训图像重建网络的交替式培训框架。快速MRI膝盖数据集的实验结果表明,拟议中的低位取样网络能够产生四倍八倍的物体特定面罩,从而实现优于若干现有方案的图像重建性能。拟议的联合取样和重建学习框架的源代码见https://github.com/zhishenhuang/mri。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年11月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2021年10月1日
Arxiv
8+阅读 · 2020年10月12日
Arxiv
5+阅读 · 2019年11月22日
Dynamic Transfer Learning for Named Entity Recognition
Arxiv
3+阅读 · 2018年12月13日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关VIP内容
专知会员服务
53+阅读 · 2020年11月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员