A recent trend in deep learning research features the application of graph neural networks for mesh-based continuum mechanics simulations. Most of these frameworks operate on graphs in which each edge connects two nodes. Inspired by the data connectivity in the finite element method, we connect the nodes by elements rather than edges, effectively forming a hypergraph. We implement a message-passing network on such a node-element hypergraph and explore the capability of the network for the modeling of fluid flow. The network is tested on two common benchmark problems, namely the fluid flow around a circular cylinder and airfoil configurations. The results show that such a message-passing network defined on the node-element hypergraph is able to generate more stable and accurate temporal roll-out predictions compared to the baseline generalized message-passing network defined on a normal graph. Along with adjustments in activation function and training loss, we expect this work to set a new strong baseline for future explorations of mesh-based fluid simulations with graph neural networks.
翻译:最近深层学习研究的一个趋势是将图形神经网络应用于基于网状的连续力力模拟。这些框架大多在每个边缘连接两个节点的图表上运作。在有限元素方法数据连接的启发下,我们通过元素而不是边缘将节点连接起来,从而有效地形成高光谱。我们在这种节点高光图上安装了一个信息传递网络,并探索了网络对流体流进行建模的能力。这个网络根据两个共同的基准问题进行了测试,即圆圆圆圆圆圆圆圆圆圆圆圆圆圆圆圆圆圆圆圆和气流结构的流流。结果显示,在节点高光图上定义的这种信息传递网络能够产生比普通图形界定的基线通用信息传递网络更稳定、更准确的时间发布预测。在调整激活功能和培训损失的同时,我们期望这项工作能为今后利用图形神经网络探索基于网状的流体模拟设定新的强基线。