Advances in modern technology have enabled the simultaneous recording of neural spiking activity, which statistically can be represented by a multivariate point process. We characterise the second order structure of this process via the spectral density matrix, a frequency domain equivalent of the covariance matrix. In the context of neuronal analysis, statistics based on the spectral density matrix can be used to infer connectivity in the brain network between individual neurons. However, the high-dimensional nature of spike train data mean that it is often difficult, or at times impossible, to compute these statistics. In this work, we discuss the importance of regularisation-based methods for spectral estimation, and propose novel methodology for use in the point process setting. We establish asymptotic properties for our proposed estimators and evaluate their performance on synthetic data simulated from multivariate Hawkes processes. Finally, we apply our methodology to neuroscience spike train data in order to illustrate its ability to infer brain connectivity.
翻译:暂无翻译