In this paper, we study the adaptive submodular cover problem under the worst-case setting. This problem generalizes many previously studied problems, namely, the pool-based active learning and the stochastic submodular set cover. The input of our problem is a set of items (e.g., medical tests) and each item has a random state (e.g., the outcome of a medical test), whose realization is initially unknown. One must select an item at a fixed cost in order to observe its realization. There is an utility function which is defined over items and their states. Our goal is to sequentially select a group of items to achieve a ``goal value'' while minimizing the maximum cost across realizations (a.k.a. worst-case cost). To facilitate our study, we introduce a broad class of stochastic functions, called \emph{worst-case submodular function}. Assume the utility function is worst-case submodular, we develop a tight $(\log (Q/\eta)+1)$-approximation policy, where $Q$ is the ``goal value'' and $\eta$ is the minimum gap between $Q$ and any attainable utility value $\hat{Q}<Q$. We also study a worst-case maximum-coverage problem, whose goal is to select a group of items to maximize its worst-case utility subject to a budget constraint. This is a flipped problem of the minimum-cost-cover problem, and to solve this problem, we develop a $(1-1/e)/2$-approximation solution.
翻译:在本文中, 我们根据最坏情况来研究适应性亚模块覆盖问题。 这个问题概括了许多以前研究过的问题, 即以池为基础的积极学习和软化子模块覆盖。 我们问题的投入是一组项目( 如医学测试), 每个项目都有随机的状态( 例如医学测试的结果), 其实现初期还不清楚 。 我们必须选择一个固定成本的项目, 以观察其实现情况 。 有一种功能是针对项目及其状态定义的实用功能。 我们的目标是依次选择一组项目, 以达到“ 目标值”, 同时将实现的最大成本降到最低 。 为了便利我们的研究, 我们引入了广泛的类类的随机功能, 称为 emph{worst- case a case formal ormod 函数 。 将一个最坏的 $( Q/\\\\ detata) expressalal expressional $( $) 和 $ legal- levelopal legal) Profal Profal lection $。 Q. $ dal_ a weq legal_ dal_ dal legal legal lex a lex_ lex lex lex a lex legal lex leg) legal leg level a we. we. legal leg legal legal legal legal lex a legal legal legal lement a legal legal_ lex a leg lex a lex a lex a lex a lex a le le le le lex a le le le le le le le le le le lex a lex a le le le le le le le le le le le le le le le le le lemental le le le le le le le le le le le le le le le le le