This paper presents an expert decision support system for time-invariant aeroacoustic source classification. The system comprises two steps: first, the calculation of acoustic properties based on spectral and spatial information; and second, the clustering of the sources based on these properties. Example data of two scaled airframe half-model wind tunnel measurements is evaluated based on deconvolved beamforming maps. A variety of aeroacoustic features are proposed that capture the characteristics and properties of the spectra. These features represent aeroacoustic properties that can be interpreted by both the machine and experts. The features are independent of absolute flow parameters such as the observed Mach numbers. This enables the proposed method to analyze data which is measured at different flow configurations. The aeroacoustic sources are clustered based on these features to determine similar or atypical behavior. For the given example data, the method results in source type clusters that correspond to human expert classification of the source types. Combined with a classification confidence and the mean feature values for each cluster, these clusters help aeroacoustic experts in classifying the identified sources and support them in analyzing their typical behavior and identifying spurious sources in-situ during measurement campaigns.


翻译:本文介绍了一个用于时间变化性大气声学源分类的专家决定支持系统。该系统由两步组成:第一,根据光谱和空间信息计算声学特性;第二,根据这些特性对源群进行分组。根据分解波束成形图,评估了两个规模的机体半模范风隧道测量的示例数据。提出了各种气声学特征,以捕捉光谱的特性和特性。这些特征代表机器和专家都可以解释的空气声学特性。这些特征独立于观察到的马赫数字等绝对流参数。这样可以建议的方法分析在不同流体构造中测量的数据。根据这些特征对空气声学源源进行分组,以确定相似或异常的行为。就上述数据而言,源类组在与人类对源类型的专家分类相符的源类别中得出的方法结果。结合了分类信任度和每个组群的中平均特征值,这些组群有助于对所查明的源群进行分类,并支持在分析其典型行为和在运动中确定精确的源值时对源进行测量。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
决策树
Datartisan数据工匠
4+阅读 · 2018年4月19日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
决策树
Datartisan数据工匠
4+阅读 · 2018年4月19日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员