Neural networks-based learning of the distribution of non-dispatchable renewable electricity generation from sources such as photovoltaics (PV) and wind as well as load demands has recently gained attention. Normalizing flow density models have performed particularly well in this task due to the training through direct log-likelihood maximization. However, research from the field of image generation has shown that standard normalizing flows can only learn smeared-out versions of manifold distributions and can result in the generation of noisy data. To avoid the generation of time series data with unrealistic noise, we propose a dimensionality-reducing flow layer based on the linear principal component analysis (PCA) that sets up the normalizing flow in a lower-dimensional space. We train the resulting principal component flow (PCF) on data of PV and wind power generation as well as load demand in Germany in the years 2013 to 2015. The results of this investigation show that the PCF preserves critical features of the original distributions, such as the probability density and frequency behavior of the time series. The application of the PCF is, however, not limited to renewable power generation but rather extends to any data set, time series, or otherwise, which can be efficiently reduced using PCA.


翻译:通过光电和风以及负荷需求等来源的不可分配可再生发电的分布的神经网络学习,最近引起了人们的注意。由于直接对日志类进行最大化培训,流动密度模型的标准化在这一任务中表现得特别出色。但是,图像生成领域的研究表明,标准化流流的标准化只能从多种分布的涂片中学习,并可能导致生成噪音数据。为了避免用不切实际的噪音生成时间序列数据,我们提议根据线性主要组成部分分析(PCA)建立一个维度减少流层,以在较低空间建立正常化流。我们培训了由此产生的主要组成部分,即2013年至2015年德国的光电和风力发电数据以及负载需求。调查结果显示,PCFD保留了原始分布的关键特征,如时间序列的概率密度和频率行为。然而,PCFD的应用并不局限于可再生能源发电,而是扩展到任何数据集、高效的时间序列或其它数据,这些数据可以减少。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
44+阅读 · 2020年12月18日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年5月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
44+阅读 · 2020年12月18日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
5+阅读 · 2019年5月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员