The $\pi$ -calculus is used as a model for programminglanguages. Its contexts exhibit arbitrary concurrency, makingthem very discriminating. This may prevent validating desir-able behavioural equivalences in cases when more disciplinedcontexts are expected.In this paper we focus on two such common disciplines:sequentiality, meaning that at any time there is a single threadof computation, and well-bracketing, meaning that calls toexternal services obey a stack-like discipline. We formalise thedisciplines by means of type systems. The main focus of thepaper is on studying the consequence of the disciplines onbehavioural equivalence. We define and study labelled bisim-ilarities for sequentiality and well-bracketing. These relationsare coarser than ordinary bisimilarity. We prove that they aresound for the respective (contextual) barbed equivalence, andalso complete under a certain technical condition.We show the usefulness of our techniques on a number ofexamples, that have mainly to do with the representation offunctions and store.
翻译:$\ pi$ - calculus 被用作编程语言的模型。 其背景表现为任意的共通, 使得它们非常有差别。 这可能会防止在预期更加有纪律的同义词中验证理想的行为等同性。 在本文中, 我们集中关注两个共同学科: 序列, 意指在任何时候都有一个单一的计算线, 和条纹, 意思是呼叫外部服务要遵守一个类似堆叠的纪律。 我们通过类型系统将纪律正规化。 文件的主要焦点是研究关于行为等同的学科的结果。 我们定义并研究所谓的连续性和裂缝。 这些关系比普通的两重相似性要复杂得多。 我们证明它们对于各自的( 顺写) 条等同, 并且在某些技术条件下也是完全的。 我们展示了我们技术的效用, 用于一些主要与功能和存储的外观。