The $\pi$ -calculus is used as a model for programminglanguages. Its contexts exhibit arbitrary concurrency, makingthem very discriminating. This may prevent validating desir-able behavioural equivalences in cases when more disciplinedcontexts are expected.In this paper we focus on two such common disciplines:sequentiality, meaning that at any time there is a single threadof computation, and well-bracketing, meaning that calls toexternal services obey a stack-like discipline. We formalise thedisciplines by means of type systems. The main focus of thepaper is on studying the consequence of the disciplines onbehavioural equivalence. We define and study labelled bisim-ilarities for sequentiality and well-bracketing. These relationsare coarser than ordinary bisimilarity. We prove that they aresound for the respective (contextual) barbed equivalence, andalso complete under a certain technical condition.We show the usefulness of our techniques on a number ofexamples, that have mainly to do with the representation offunctions and store.


翻译:$\ pi$ - calculus 被用作编程语言的模型。 其背景表现为任意的共通, 使得它们非常有差别。 这可能会防止在预期更加有纪律的同义词中验证理想的行为等同性。 在本文中, 我们集中关注两个共同学科: 序列, 意指在任何时候都有一个单一的计算线, 和条纹, 意思是呼叫外部服务要遵守一个类似堆叠的纪律。 我们通过类型系统将纪律正规化。 文件的主要焦点是研究关于行为等同的学科的结果。 我们定义并研究所谓的连续性和裂缝。 这些关系比普通的两重相似性要复杂得多。 我们证明它们对于各自的( 顺写) 条等同, 并且在某些技术条件下也是完全的。 我们展示了我们技术的效用, 用于一些主要与功能和存储的外观。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
38+阅读 · 2020年3月10日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
38+阅读 · 2020年3月10日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
Top
微信扫码咨询专知VIP会员