Diagnostic radiologists need artificial intelligence (AI) for medical imaging, but access to medical images required for training in AI has become increasingly restrictive. To release and use medical images, we need an algorithm that can simultaneously protect privacy and preserve pathologies in medical images. To develop such an algorithm, here, we propose DP-GLOW, a hybrid of a local differential privacy (LDP) algorithm and one of the flow-based deep generative models (GLOW). By applying a GLOW model, we disentangle the pixelwise correlation of images, which makes it difficult to protect privacy with straightforward LDP algorithms for images. Specifically, we map images onto the latent vector of the GLOW model, each element of which follows an independent normal distribution, and we apply the Laplace mechanism to the latent vector. Moreover, we applied DP-GLOW to chest X-ray images to generate LDP images while preserving pathologies.
翻译:诊断放射学家需要人工智能(AI)来进行医学成像,但是获得AI培训所需的医疗图象已变得日益受到限制。为了释放和使用医疗图象,我们需要一种既能保护隐私又能保护医疗图象病理的算法。为了发展这样一种算法,我们在这里提议DP-GLOW,一种地方差异隐私算法和一种流动的深层基因化模型(GLOW)的混合体。我们应用了GLOW模型来解开图像的像素相关性,这使得很难用直接的LDP图象算法来保护隐私。具体地说,我们把图像映射到GLOW模型的潜载体上,每个元素都经过独立的正常分布,我们把Laplace机制应用到潜在的矢量上。此外,我们用DP-GLOW对胸部X光图像应用了DP-GLOW来生成LDP图象,同时保存病理学。