Collecting and analyzing evolving longitudinal data has become a common practice. One possible approach to protect the users' privacy in this context is to use local differential privacy (LDP) protocols, which ensure the privacy protection of all users even in the case of a breach or data misuse. Existing LDP data collection protocols such as Google's RAPPOR and Microsoft's dBitFlipPM can have longitudinal privacy linear to the domain size k, which is excessive for large domains, such as Internet domains. To solve this issue, in this paper we introduce a new LDP data collection protocol for longitudinal frequency monitoring named LOngitudinal LOcal HAshing (LOLOHA) with formal privacy guarantees. In addition, the privacy-utility trade-off of our protocol is only linear with respect to a reduced domain size $2\leq g \ll k$. LOLOHA combines a domain reduction approach via local hashing with double randomization to minimize the privacy leakage incurred by data updates. As demonstrated by our theoretical analysis as well as our experimental evaluation, LOLOHA achieves a utility competitive to current state-of-the-art protocols, while substantially minimizing the longitudinal privacy budget consumption by up to k/g orders of magnitude.
翻译:收集并分析不断演变的纵向数据已成为一种常见做法。在这种情况下,保护用户隐私的一种可能做法是使用地方差异隐私协议(LDP),确保即使在违反或滥用数据的情况下也保护所有用户的隐私。现有的LDP数据收集协议,如谷歌的RAPPOR和微软的 dBitFlippM 等现有LDP数据收集协议,可以将纵向隐私线直线到域大小 k,这对因特网域等大域而言是过分的。为了解决这个问题,我们在本文件中为长期频率监测引入了新的LOnggnique Local Hashing(LLOHA)数据收集协议(LOLOHA),提供正式的隐私保障。此外,我们的协议的隐私使用权交易只是线性交易,对于降低的域号为2\leq g\ll k$.。 LOLOHA将减少域内隐私的方法与双重随机分解相结合,以尽量减少数据更新产生的隐私渗漏。正如我们的理论分析以及我们的实验性评估所证明,LOOHA对目前的状态/艺术协议具有实用性竞争力,同时通过大幅度降低长期预算消耗量。