The problem of constrained reinforcement learning (CRL) holds significant importance as it provides a framework for addressing critical safety satisfaction concerns in the field of reinforcement learning (RL). However, with the introduction of constraint satisfaction, the current CRL methods necessitate the utilization of second-order optimization or primal-dual frameworks with additional Lagrangian multipliers, resulting in increased complexity and inefficiency during implementation. To address these issues, we propose a novel first-order feasible method named Constrained Proximal Policy Optimization (CPPO). By treating the CRL problem as a probabilistic inference problem, our approach integrates the Expectation-Maximization framework to solve it through two steps: 1) calculating the optimal policy distribution within the feasible region (E-step), and 2) conducting a first-order update to adjust the current policy towards the optimal policy obtained in the E-step (M-step). We establish the relationship between the probability ratios and KL divergence to convert the E-step into a convex optimization problem. Furthermore, we develop an iterative heuristic algorithm from a geometric perspective to solve this problem. Additionally, we introduce a conservative update mechanism to overcome the constraint violation issue that occurs in the existing feasible region method. Empirical evaluations conducted in complex and uncertain environments validate the effectiveness of our proposed method, as it performs at least as well as other baselines.
翻译:暂无翻译