For many statistical experiments, there exists a multitude of optimal designs. If we consider models with uncorrelated observations and adopt the approach of approximate experimental design, the set of all optimal designs typically forms a multivariate polytope. In this paper, we mathematically characterize the polytope of optimal designs. In particular, we show that its vertices correspond to the so-called minimal optimum designs. Consequently, we compute the vertices for several classical multifactor regression models of the first and the second degree. To this end, we use software tools based on rational arithmetic; therefore, the computed list is accurate and complete. The polytope of optimal experimental designs, and its vertices, can be applied in several ways. For instance, it can aid in constructing cost-efficient and efficient exact designs.
翻译:暂无翻译