We study approximation classes for adaptive time-stepping finite element methods for time-dependent Partial Differential Equations (PDE). We measure the approximation error in $L_2([0,T)\times\Omega)$ and consider the approximation with discontinuous finite elements in time and continuous finite elements in space, of any degree. As a byproduct we define Besov spaces for vector-valued functions on an interval and derive some embeddings, as well as Jackson- and Whitney-type estimates.
翻译:我们研究适应性时间步数限制元素方法的近似等级。我们用$L_2([0,T)\times\\Omega$)衡量近似误差,并考虑时间上不连续的有限元素和空间中任何程度的连续有限元素的近似等级。作为副产品,我们将贝索夫空间界定为矢量值函数的间隔,并得出一些嵌入值,以及杰克逊和惠特尼类型的估计值。