We consider the problem of estimating fold-changes in the expected value of a multivariate outcome that is observed subject to unknown sample-specific and category-specific perturbations. We are motivated by high-throughput sequencing studies of the abundance of microbial taxa, in which microbes are systematically over- and under-detected relative to their true abundances. Our log-linear model admits a partially identifiable estimand, and we establish full identifiability by imposing interpretable parameter constraints. To reduce bias and guarantee the existence of parameter estimates in the presence of sparse observations, we apply an asymptotically negligible and constraint-invariant penalty to our estimating function. We develop a fast coordinate descent algorithm for estimation, and an augmented Lagrangian algorithm for estimation under null hypotheses. We construct a model-robust score test, and demonstrate valid inference even for small sample sizes and violated distributional assumptions. The flexibility of the approach and comparisons to related methods are illustrated via a meta-analysis of microbial associations with colorectal cancer.
翻译:暂无翻译