Let $R \cup B$ be a set of $n$ points in $\mathbb{R}^2$, and let $k \in 1..n$. Our goal is to compute a line that "best" separates the "red" points $R$ from the "blue" points $B$ with at most $k$ outliers. We present an efficient semi-online dynamic data structure that can maintain whether such a separator exists. Furthermore, we present efficient exact and approximation algorithms that compute a linear separator that is guaranteed to misclassify at most $k$, points and minimizes the distance to the farthest outlier. Our exact algorithm runs in $O(nk + n \log n)$ time, and our $(1+\varepsilon)$-approximation algorithm runs in $O(\varepsilon^{-1/2}((n + k^2) \log n))$ time. Based on our $(1+\varepsilon)$-approximation algorithm we then also obtain a semi-online data structure to maintain such a separator efficiently.
翻译:暂无翻译