Pervasive and ubiquitous computing facilitates immediate access to information in the sense of always-on. Information such as news, messages, or reminders can significantly enhance our daily routines but are rendered useless or disturbing when not being aligned with our intrinsic interruptibility preferences. Attention management systems use machine learning to identify short-term opportune moments, so that information delivery leads to fewer interruptions. Humans' intrinsic interruptibility preferences - established for and across social roles and life domains - would complement short-term attention and interruption management approaches. In this article, we present our comprehensive results towards social role-based attention and interruptibility management. Our approach combines on-device sensing and machine learning with theories from social science to form a personalized two-stage classification model. Finally, we discuss the challenges of the current and future AI-driven attention management systems concerning privacy, ethical issues, and future directions.
翻译:新闻、信息或催复通知等信息可以大大改进我们的日常工作,但如果与我们固有的干扰偏好不协调,就会变得毫无用处或令人不安。注意力管理系统利用机器学习来确定短期的合适时机,从而减少信息的中断。人类为社会角色和生活领域建立并跨越社会角色和生活领域建立的内在干扰偏好将补充短期关注和中断管理办法。在本篇文章中,我们介绍了我们在社会角色关注和干扰管理方面所取得的全面成果。我们的方法将设备感应和机器学习与社会科学理论结合起来,形成个性化的两阶段分类模式。最后,我们讨论了目前和未来的人工智能关注管理系统在隐私、伦理问题和未来方向方面所面临的挑战。