Generative adversarial networks (GANs) have achieved remarkable progress in the natural image field. However, when applying GANs in the remote sensing (RS) image generation task, we discover an extraordinary phenomenon: the GAN model is more sensitive to the size of training data for RS image generation than for natural image generation. In other words, the generation quality of RS images will change significantly with the number of training categories or samples per category. In this paper, we first analyze this phenomenon from two kinds of toy experiments and conclude that the amount of feature information contained in the GAN model decreases with reduced training data. Based on this discovery, we propose two innovative adjustment schemes, namely Uniformity Regularization (UR) and Entropy Regularization (ER), to increase the information learned by the GAN model at the distributional and sample levels, respectively. We theoretically and empirically demonstrate the effectiveness and versatility of our methods. Extensive experiments on the NWPU-RESISC45 and PatternNet datasets show that our methods outperform the well-established models on RS image generation tasks.


翻译:在自然图像领域,产生对抗性网络(GANs)取得了显著的进展,然而,在应用GANs进行遥感图像生成任务时,我们发现了一个特殊的现象:GAN模型比自然图像生成对SRS图像培训数据的规模更加敏感,换言之,SRS图像的生成质量随着每类培训类别或样本的数量而发生重大变化。在本文中,我们首先从两种玩具实验中分析这一现象,并得出结论,GAN模型中包含的特征信息数量随着培训数据减少而减少。基于这一发现,我们提出了两种创新调整计划,即统一性常规化(UR)和 Entropy常规化(ER),以增加GAN模型在分布和样本层面所学的信息。我们从理论上和实验上展示了我们方法的有效性和多变性。关于NWPU-RESISC45和模式网络数据集的广泛实验表明,我们的方法超过了关于RS图像生成任务的既定模型。</s>

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2023年4月27日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员