This paper studies learning-based decentralized power control methods for cell-free massive multiple-input multiple-output (MIMO) systems where a central processor (CP) controls access points (APs) through fronthaul coordination. To determine the transmission policy of distributed APs, it is essential to develop a network-wide collaborative optimization mechanism. To address this challenge, we design a cooperative learning (CL) framework which manages computation and coordination strategies of the CP and APs using dedicated deep neural network (DNN) modules. To build a versatile learning structure, the proposed CL is carefully designed such that its forward pass calculations are independent of the number of APs. To this end, we adopt a parameter reuse concept which installs an identical DNN module at all APs. Consequently, the proposed CL trained at a particular configuration can be readily applied to arbitrary AP populations. Numerical results validate the advantages of the proposed CL over conventional non-cooperative approaches.
翻译:本文研究无细胞型大规模多投入多产出产出(MIMO)系统的分散权力控制方法,中央处理器(CP)通过前厅协调控制入口点。为了确定分布式APs的传输政策,必须开发一个全网络范围的合作优化机制。为了应对这一挑战,我们设计了一个合作学习(CL)框架,利用专门的深层神经网络模块管理CP和APs的计算和协调战略。为了建立一个多功能学习结构,拟议的CL经过精心设计,以便其远端计算独立于APs的数量。为此,我们采用了参数再利用概念,在所有APs安装一个相同的DNN模块。因此,在特定配置下培训的拟议CL可以随时适用于任意的APs人口。数字结果证实了拟议的CL相对于常规非操作方法的优势。</s>