The stochastic dynamic matching problem has recently drawn attention in the stochastic-modeling community due to its numerous applications, ranging from supply-chain management to kidney exchange programs. In this paper, we consider a matching problem in which items of different classes arrive according to independent Poisson processes. Unmatched items are stored in a queue, and compatibility constraints are described by a simple graph on the classes, so that two items can be matched if their classes are neighbors in the graph. We analyze the efficiency of matching policies, not only in terms of system stability, but also in terms of matching rates between different classes. Our results rely on the observation that, under any stable policy, the matching rates satisfy a conservation equation that equates the arrival and departure rates of each item class. Our main contributions are threefold. We first introduce a mapping between the dimension of the solution set of this conservation equation, the structure of the compatibility graph, and the existence of a stable policy. In particular, this allows us to derive a necessary and sufficient stability condition that is verifiable in polynomial time. Secondly, we describe the convex polytope of non-negative solutions of the conservation equation. When this polytope is reduced to a single point, we give a closed-form expression of the solution; in general, we characterize the vertices of this polytope using again the graph structure. Lastly, we show that greedy policies cannot, in general, achieve every point in the polytope. In contrast, non-greedy policies can reach any point of the interior of this polytope, and we give a condition for these policies to also reach the boundary of the polytope.
翻译:随机动态匹配问题最近引起视觉模型界的注意, 原因是其应用范围众多, 从供应链管理到肾交换程序。 在本文中, 我们考虑到一个匹配问题, 不同类别的项目按照独立的 Poisson 进程到达。 我们首先将不匹配的物品储存在队列中, 兼容性限制通过一个简单的图表在类中描述, 这样如果它们的类是图中的邻居, 两个项目可以匹配。 我们分析匹配政策的效率, 不仅在系统稳定性方面, 而且在不同类别之间的匹配率方面。 我们的结果依赖于这样的观察: 在任何稳定的政策下, 匹配率满足一个保护方程, 等同每个项目的到达和离开率。 我们的主要贡献是三重 。 我们首先对这个保护方程式的解决方案的层面进行绘图, 兼容性图表的结构, 以及一个稳定的政策的存在。 特别是, 这使得我们可以得出一个必要和足够的稳定性条件, 并且可以在任何多数值的时间里进行校准。 其次, 我们描述一个不透明的图形的组合点的组合政策, 也无法达到这个非否定点的组合政策, 的组合式的组合式的组合式的表达点 。 当我们能够显示一个固定的单一的公式的公式的公式的公式的表达中, 当我们一个普通的公式的公式的结点, 时, 显示一个简单的的公式的公式的公式的公式的结为整个的公式, 。