Few-shot learning amounts to learning representations and acquiring knowledge such that novel tasks may be solved with both supervision and data being limited. Improved performance is possible by transductive inference, where the entire test set is available concurrently, and semi-supervised learning, where more unlabeled data is available. Focusing on these two settings, we introduce a new algorithm that leverages the manifold structure of the labeled and unlabeled data distribution to predict pseudo-labels, while balancing over classes and using the loss value distribution of a limited-capacity classifier to select the cleanest labels, iteratively improving the quality of pseudo-labels. Our solution surpasses or matches the state of the art results on four benchmark datasets, namely miniImageNet, tieredImageNet, CUB and CIFAR-FS, while being robust over feature space pre-processing and the quantity of available data. The publicly available source code can be found in https://github.com/MichalisLazarou/iLPC.
翻译:少样本学习是指在监督和数据量受限的情况下学习表征和获得知识,以便解决新任务。通过同时利用测试集进行推导和采用更多未标记数据进行半监督学习,可以提高性能。针对这两种情况,我们介绍了一种新算法,利用有标记和未标记数据分布的曲面结构预测伪标签,同时平衡各个类别,并使用有限容量分类器的损失值分布选择最干净的标签,迭代提高伪标签的质量。我们的解决方案在四个基准数据集(miniImageNet、tieredImageNet、CUB和CIFAR-FS)上超越或匹配了最先进的结果,同时在特征空间预处理和可用数据量上表现出鲁棒性。公开可用的源代码可以在 https://github.com/MichalisLazarou/iLPC 中找到。