Few-shot learning amounts to learning representations and acquiring knowledge such that novel tasks may be solved with both supervision and data being limited. Improved performance is possible by transductive inference, where the entire test set is available concurrently, and semi-supervised learning, where more unlabeled data is available. Focusing on these two settings, we introduce a new algorithm that leverages the manifold structure of the labeled and unlabeled data distribution to predict pseudo-labels, while balancing over classes and using the loss value distribution of a limited-capacity classifier to select the cleanest labels, iteratively improving the quality of pseudo-labels. Our solution surpasses or matches the state of the art results on four benchmark datasets, namely miniImageNet, tieredImageNet, CUB and CIFAR-FS, while being robust over feature space pre-processing and the quantity of available data. The publicly available source code can be found in https://github.com/MichalisLazarou/iLPC.


翻译:少样本学习是指在监督和数据量受限的情况下学习表征和获得知识,以便解决新任务。通过同时利用测试集进行推导和采用更多未标记数据进行半监督学习,可以提高性能。针对这两种情况,我们介绍了一种新算法,利用有标记和未标记数据分布的曲面结构预测伪标签,同时平衡各个类别,并使用有限容量分类器的损失值分布选择最干净的标签,迭代提高伪标签的质量。我们的解决方案在四个基准数据集(miniImageNet、tieredImageNet、CUB和CIFAR-FS)上超越或匹配了最先进的结果,同时在特征空间预处理和可用数据量上表现出鲁棒性。公开可用的源代码可以在 https://github.com/MichalisLazarou/iLPC 中找到。

0
下载
关闭预览

相关内容

【CVPR2022】带噪声标签的少样本学习
专知会员服务
39+阅读 · 2022年4月15日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2022年4月12日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
31+阅读 · 2020年9月21日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
VIP会员
相关VIP内容
【CVPR2022】带噪声标签的少样本学习
专知会员服务
39+阅读 · 2022年4月15日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关论文
Arxiv
12+阅读 · 2022年4月12日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
31+阅读 · 2020年9月21日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员