A novel framework has recently been proposed for designing the molecular structure of chemical compounds with a desired chemical property using both artificial neural networks and mixed integer linear programming. In the framework, a chemical graph with a target chemical value is inferred as a feasible solution of a mixed integer linear program that represents a prediction function and other requirements on the structure of graphs. In this paper, we propose a procedure for generating other feasible solutions of the mixed integer linear program by searching the neighbor of output chemical graph in a search space. The procedure is combined in the framework as a new building block. The results of our computational experiments suggest that the proposed method can generate an additional number of new chemical graphs with up to 50 non-hydrogen atoms.
翻译:最近提出了一个新的框架,用于设计具有理想化学特性的化学化合物分子结构,同时使用人工神经网络和混合整数线性编程。在这个框架中,一个具有目标化学价值的化学图被推断为混合整数线性程序的一种可行解决办法,它代表一种预测函数和对图形结构的其他要求。在本文件中,我们提出了一个程序,通过在搜索空间搜索输出化学图的相邻区域,为混合整数线性程序产生其他可行的解决办法。这个程序被合并为一个新的构件。我们的计算实验结果表明,拟议的方法可以产生更多新的化学图,其中含有多达50个非氢原子。