A basic question in network community detection is how modular a given network is. This is usually addressed by evaluating the quality of partitions detected in the network. The Girvan-Newman (GN) modularity function is the standard way to make this assessment, but it has a number of drawbacks. Most importantly, it is not clearly interpretable, given that the measure can take relatively large values on partitions of random networks without communities. Here we propose a new measure based on the concept of robustness: modularity is the probability to find trivial partitions when the structure of the network is randomly perturbed. This concept can be implemented for any clustering algorithm capable of telling when a group structure is absent. Tests on artificial and real graphs reveal that robustness modularity can be used to assess and compare the strength of the community structure of different networks. We also introduce two other quality functions: modularity difference, a suitably normalized version of the GN modularity; information modularity, a measure of distance based on information compression. Both measures are strongly correlated with robustness modularity, and are promising options as well.
翻译:网络社区探测的基本问题是, 特定网络是如何模块化的。 通常通过评估网络中检测到的分区的质量来解决。 Girvan- Newman 模块化功能是进行这种评估的标准方法, 但有一些缺点。 最重要的是, 无法明确解释, 因为该测量方法可以在随机网络的分区上对无社区网络使用相对较大的价值。 我们在这里提出了一个基于稳健性概念的新措施: 模块性是当网络结构被随机扰动时找到微小分区的可能性。 这个概念可以用于任何组合算法, 能够在没有组合结构时进行说明。 人工和真实图形测试显示, 强健性模块性可用于评估和比较不同网络社区结构的强度。 我们还引入了另外两个质量功能: 模块性差异, 一种适合的GN模块化版本; 信息模块性, 一种基于信息压缩的距离度。 两种计量方法都与稳健性模块化紧密相关, 并且都充满希望的选项 。