Equity is a core concern of learning analytics. However, applications that teach and assess equity skills, particularly at scale are lacking, often due to barriers in evaluating language. Advances in generative AI via large language models (LLMs) are being used in a wide range of applications, with this present work assessing its use in the equity domain. We evaluate tutor performance within an online lesson on enhancing tutors' skills when responding to students in potentially inequitable situations. We apply a mixed-method approach to analyze the performance of 81 undergraduate remote tutors. We find marginally significant learning gains with increases in tutors' self-reported confidence in their knowledge in responding to middle school students experiencing possible inequities from pretest to posttest. Both GPT-4o and GPT-4-turbo demonstrate proficiency in assessing tutors ability to predict and explain the best approach. Balancing performance, efficiency, and cost, we determine that few-shot learning using GPT-4o is the preferred model. This work makes available a dataset of lesson log data, tutor responses, rubrics for human annotation, and generative AI prompts. Future work involves leveling the difficulty among scenarios and enhancing LLM prompts for large-scale grading and assessment.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
126+阅读 · 2020年9月6日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
10+阅读 · 2021年2月26日
Arxiv
126+阅读 · 2020年9月6日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员