3D generative models have been recently successful in generating realistic 3D objects in the form of point clouds. However, most models do not offer controllability to manipulate the shape semantics of component object parts without extensive semantic attribute labels or other reference point clouds. Moreover, beyond the ability to perform simple latent vector arithmetic or interpolations, there is a lack of understanding of how part-level semantics of 3D shapes are encoded in their corresponding generative latent spaces. In this paper, we propose 3DLatNav; a novel approach to navigating pretrained generative latent spaces to enable controlled part-level semantic manipulation of 3D objects. First, we propose a part-level weakly-supervised shape semantics identification mechanism using latent representations of 3D shapes. Then, we transfer that knowledge to a pretrained 3D object generative latent space to unravel disentangled embeddings to represent different shape semantics of component parts of an object in the form of linear subspaces, despite the unavailability of part-level labels during the training. Finally, we utilize those identified subspaces to show that controllable 3D object part manipulation can be achieved by applying the proposed framework to any pretrained 3D generative model. With two novel quantitative metrics to evaluate the consistency and localization accuracy of part-level manipulations, we show that 3DLatNav outperforms existing unsupervised latent disentanglement methods in identifying latent directions that encode part-level shape semantics of 3D objects. With multiple ablation studies and testing on state-of-the-art generative models, we show that 3DLatNav can implement controlled part-level semantic manipulations on an input point cloud while preserving other features and the realistic nature of the object.
翻译:3D 基因模型最近成功地生成了现实的 3D 对象, 以点云的形式。 然而, 大多数模型都没有提供控制性来操作组件部件的形状语义, 没有广泛的语义属性标签或其他引用点云。 此外, 除了能够执行简单的潜伏矢量计算或内插计算外, 我们无法理解 3D 形状的局部语义是如何在相应的基因潜伏空间中编码的。 在本文中, 我们提议 3DLatNav ; 一种新颖的方法, 用于导航预训练的基因潜伏天体, 以便能够对 3D 对象进行控制性部位的语义操纵。 首先, 我们建议使用一个部分的 部位 弱度、 部位、 部位的语义识别机制 3D 。 然后, 我们将这一知识传输到一个预先训练的 3D 对象的外嵌入层, 以代表线性软性亚星系的部件。 尽管在培训过程中无法找到 部位的 部位 标 3D 。 最后, 我们利用这些已确认的亚形的 部位的 部位的 部位模型, 将显示控制 部位 部位的 部位 部位 。