We propose a method for solving the hidden subgroup problem in nilpotent groups. The main idea is iteratively transforming the hidden subgroup to its images in the quotient groups by the members of a central series, eventually to its image in the commutative quotient of the original group; and then using an abelian hidden subgroup algorithm to determine this image. Knowing this image allows one to descend to a proper subgroup unless the hidden subgroup is the full group. The transformation relies on finding zero sum subsequences of sufficiently large sequences of vectors over finite prime fields. We present a new deterministic polynomial time algorithm for the latter problem in the case when the size of the field is constant. The consequence is a polynomial time exact quantum algorithm for the hidden subgroup problem in nilpotent groups having constant nilpotency class and whose order only have prime factors also bounded by a constant.


翻译:我们提出了一种解决 nilpotent 群中隐藏子群问题的方法。主要思路是通过矩阵乘法递归地将隐藏子群变换为它在商群中的像,最终变换为原始群的交换商群中的像;之后使用一个阿贝尔隐藏子群算法来确定这个像。知道了这个像就可以下降到一个合适的子群,除非隐藏子群就是整个群。这种变换依赖于在有限素数域上的足够大的向量序列中找到零和子序列。我们提出了一种新的确定性多项式时间算法,用于处理大小为常数的域的情况。其结果是,在 nilpotent 群中,当 nilpotency class 为常数且其 order 仅有小于常数的素因子的情况下,我们得到了一个多项式时间的确切量子算法来解决隐藏子群问题。

0
下载
关闭预览

相关内容

【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【Java实现遗传算法】162页pdf,Genetic Algorithms in Java Basics
专知会员服务
43+阅读 · 2020年7月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关资讯
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员