We study the Nash equilibrium and the price of anarchy in the max-distance network creation game. Network creation game, first introduced and studied by Fabrikant et al., is a classic model for real-world networks from a game-theoretic point of view. In a network creation game with n selfish vertex agents, each vertex can build undirected edges incident to a subset of the other vertices. The goal of every agent is to minimize its creation cost plus its usage cost, where the creation cost is the unit edge cost $\alpha$ times the number of edges it builds, and the usage cost is the sum of distances to all other agents in the resulting network. The max-distance network creation game, introduced and studied by Demaine et al., is a key variant of the original game, where the usage cost takes into account the maximum distance instead. The main result of this paper shows that for $\alpha > 19$ all equilibrium graphs in the max-distance network creation game must be trees, while the best bound in previous work is $\alpha > 129$. We also improve the constant upper bound on the price of anarchy to 3 for tree equilibria. Our work brings new insights into the structure of Nash equilibria and takes one step forward in settling the so-called tree conjecture in the max-distance network creation game.
翻译:我们研究了最大距离网络创建游戏中的纳什平衡和无政府状态价格。 由Fabrikant等人首先推出和研究的网络创建游戏, 是游戏理论观点中真实世界网络的经典模型。 在使用自私的顶点代理器的网络创建游戏中, 每个顶点可以将非定向边缘事件构建到其他顶点的一个子。 每个代理商的目标是将其创建成本及其使用成本降到最低, 创建成本是单位边价的倍于所建边缘数的单位边价, 而使用成本是所建网络中所有其他代理商的距离之和。 由Demaine 等人介绍和研究的最长距离网络创建游戏是原始游戏的关键变体, 使用成本可以将最大距离算入一个子端点。 本文的主要结果显示, $alpha > 19$ 和所有最大距离网络创建的平衡图必须是树木, 而先前工作的最佳约束值是 $\ $ > 129美元, 使用成本是所建网络中所有其他代理商的距离。 我们还改进了我们最短距离的树层结构,, 将我们最高级的Slimal Stal- routal strual strual Stal strut the a strutin strutin strut the the nal strutin strut the nal strual strut the sal strual laxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx anxxxxxxxxx 。