With the increasing maturity of the human pose estimation domain, its applications have become more and more broaden. Yet, the state-of-the-art pose estimation models performance degrades significantly in the applications that include novel subjects or poses, such as infants with their unique movements. Infant motion analysis is a topic with critical importance in child health and developmental studies. However, models trained on large-scale adult pose datasets are barely successful in estimating infant poses due to significant differences in their body ratio and the versatility of poses they can take compared to adults. Moreover, the privacy and security considerations hinder the availability of enough infant images required for training a robust pose estimation model from scratch. Here, we propose a fine-tuned domain-adapted infant pose (FiDIP) estimation model, that transfers the knowledge of adult poses into estimating infant pose with the supervision of a domain adaptation technique on a mixed real and synthetic infant pose dataset. In developing FiDIP, we also built a synthetic and real infant pose (SyRIP) dataset with diverse and fully-annotated real infant images and generated synthetic infant images. We demonstrated that our FiDIP model outperforms other state-of-the-art human pose estimation model for the infant pose estimation, with the mean average precision (AP) as high as 92.2.
翻译:然而,最先进的估计模型的性能在应用中大大降低,这些应用包括新的科目或装饰,如具有独特运动的婴儿。婴儿运动分析是儿童健康和发育研究中一个至关重要的专题。然而,由于大规模成人成形数据集培训模型的成熟程度越来越成熟,因此在估计婴儿成形方面几乎没有成功。此外,隐私和安全方面的考虑阻碍了为从零开始训练一个稳健的成形估计模型所需的足够婴儿图像的提供。在这里,我们提议了一个精细调整的域适应婴儿成型(FIDIP)估计模型,将成人成形知识转移到婴儿的造型,同时监督关于混合真实和合成婴儿成形数据集的域适应技术。在开发FIDIP的过程中,我们还建立了一个合成和真实的婴儿成型(SyRIP)数据集,该数据集的多样性和充分说明真实的婴儿成型图像,并生成了合成婴儿成像。我们证明,我们的FIDIP模型模型模型超越了其他模型的精确性模型,作为婴儿平均的模型。我们展示了其他模型的模型,作为较高的模型的模型,作为较高的模型,作为较高的模型,作为较高的模型。