Quantum random number generation is an enabling technology for applications of quantum information science. For instance, a secure quantum key distribution (QKD) system requires a practical, easily integratable, high-quality and fast random number generator. Here, we propose and demonstrate an approach to random number generation that promises to satisfy these requirements. In our scheme, vacuum fluctuations of the electromagnetic-field inside a laser cavity are sampled in a discrete manner in time and amplified by injecting current pulses into the laser. This results in the generation of laser pulses with random phases. Random numbers can be obtained by interfering the laser pulses with another independent laser operating at the same frequency. Using only off-the-shelf opto-electronic and fiber-optic components at 1.5 $\mu$m wavelength, we demonstrate experimentally the generation of high-quality random bits at a rate of up to 1.5 GHz. With the help of better opto-electronic devices, the generation rate of our scheme can be improved up to tens of GHz. Our results show the potential of the new scheme for practical quantum information applications.


翻译:量子随机数字生成是一种应用量子信息科学的赋能技术。例如,一个安全的量子钥匙分布系统(QKD)需要一个实用的、容易识别的、高质量和快速随机数生成器。在这里,我们提出并展示一种方法来随机生成数字,保证满足这些要求。在我们的方法中,在激光孔隙内电磁场的真空波动会以离散的方式及时抽样,并通过将流脉脉冲注入激光而放大。这导致激光脉冲产生随机阶段。通过以同一频率操作的另一个独立的激光脉冲干扰激光脉冲,可以取得随机数。我们只使用1.5美元的现成光电子和光纤波长,实验性地展示出以1.5千兆赫的速度生成的高质量随机位数。在更好的光电极设备的帮助下,我们计划的生成率可以提高到数十千兆赫。我们的结果显示新的量子信息应用计划的潜力。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
3+阅读 · 2019年10月31日
Arxiv
3+阅读 · 2018年10月8日
Learning to Importance Sample in Primary Sample Space
Arxiv
4+阅读 · 2018年4月30日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员