Statisticians often face the choice between using probability models or a paradigm defined by minimising a loss function. Both approaches are useful and, if the loss can be re-cast into a proper probability model, there are many tools to decide which model or loss is more appropriate for the observed data, in the sense of explaining the data's nature. However, when the loss leads to an improper model, there are no principled ways to guide this choice. We address this task by combining the Hyv\"arinen score, which naturally targets infinitesimal relative probabilities, and general Bayesian updating, which provides a unifying framework for inference on losses and models. Specifically we propose the H-score, a general Bayesian selection criterion and prove that it consistently selects the (possibly improper) model closest to the data-generating truth in Fisher's divergence. We also prove that an associated H-posterior consistently learns optimal hyper-parameters featuring in loss functions, including a challenging tempering parameter in generalised Bayesian inference. As salient examples, we consider robust regression and non-parametric density estimation where popular loss functions define improper models for the data and hence cannot be dealt with using standard model selection tools. These examples illustrate advantages in robustness-efficiency trade-offs and provide a Bayesian implementation for kernel density estimation, opening a new avenue for Bayesian non-parametrics.


翻译:使用概率模型或以最小化损失函数为最小化定义的范式,统计学家往往在使用概率模型或范式之间做出选择。两种方法都是有用的,如果损失可以重新写成适当的概率模型,那么,从解释数据性质的角度,有许多工具可以决定哪些模型或损失更适合观察到的数据。然而,当损失导致不适当的模型时,没有原则性的方法来指导这一选择。我们通过将Hyv\'arinen评分(Hyv\'amarinnen 评分(Hyv\'arinen)和一般Bayesian更新(Bayesian)相结合来应对这一任务,后者自然目标是极小的相对概率,而Bayesian的更新为损失和模型的推断提供了一个统一框架。具体地,我们建议采用H-countreal、通用的Bayesaysian选择标准性标准性估算标准性(可能不适当)模型来解释标准性损失率。我们还证明一个相关的H-efferferferference 的模型不能用来解释标准性估算标准性模型和标准性损失模型。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
一文理解Ranking Loss/Margin Loss/Triplet Loss
极市平台
16+阅读 · 2020年8月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
一文理解Ranking Loss/Margin Loss/Triplet Loss
极市平台
16+阅读 · 2020年8月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员