We propose a novel adaptive importance sampling scheme for Bayesian inversion problems where the inference of the variables of interest and the power of the data noise is split. More specifically, we consider a Bayesian analysis for the variables of interest (i.e., the parameters of the model to invert), whereas we employ a maximum likelihood approach for the estimation of the noise power. The whole technique is implemented by means of an iterative procedure, alternating sampling and optimization steps. Moreover, the noise power is also used as a tempered parameter for the posterior distribution of the the variables of interest. Therefore, a sequence of tempered posterior densities is generated, where the tempered parameter is automatically selected according to the actual estimation of the noise power. A complete Bayesian study over the model parameters and the scale parameter can be also performed. Numerical experiments show the benefits of the proposed approach.
翻译:我们为Bayesian Inversion问题提出了一个新的适应性重要性抽样方案,其中对感兴趣的变量的推论和数据噪声的功率分开。更具体地说,我们考虑对感兴趣的变量进行Bayesian分析(即模型的参数倒置),而我们则对噪音功率采用最大可能性估计方法。整个技术是通过迭接程序、交替取样和优化步骤来实施的。此外,噪音功率还被用作利益变量的后端分布的减速参数。因此,产生了一种温和的后端密度序列,根据对噪音功率的实际估计自动选择温带参数。也可以对模型参数和比例参数进行全面的Bayesian研究。数字实验显示了拟议方法的效益。