A well-designed numerical method for the shallow water equations (SWE) should ensure well-balancedness, nonnegativity of water heights, and entropy stability. For a continuous finite element discretization of a nonlinear hyperbolic system without source terms, positivity preservation and entropy stability can be enforced using the framework of algebraic flux correction (AFC). In this work, we develop a well-balanced AFC scheme for the SWE system including a topography source term. Our method preserves the lake at rest equilibrium up to machine precision. The low-order version represents a generalization of existing finite volume approaches to the finite element setting. The high-order extension is equipped with a property-preserving flux limiter. Nonnegativity of water heights is guaranteed under a standard CFL condition. Moreover, the flux-corrected space discretization satisfies a semi-discrete entropy inequality. New algorithms are proposed for realistic simulation of wetting and drying processes. Numerical examples for well-known benchmarks are presented to evaluate the performance of the scheme.
翻译:用于浅水方程式(SWE)的精心设计的浅水方程式数字方法应确保水高的平衡性、非增强性、以及恒温稳定性。对于无源条件的非线性双曲系统的持续有限分解元素而言,可利用代数通量校正框架(AFC)强制实施活性保全和恒温稳定性。在这项工作中,我们为SWE系统制定了一种平衡的AFC计划,包括一个地形源术语。我们的方法将湖的平衡保存在休息平衡上,直至机器精确度。低序版本代表了对限定元素设置的现有有限量方法的概括化。高序扩展配有一种保存财产的通量限制装置。在标准的CFL条件下,水高度的不增强性得到保证。此外,通量修正的空间离解能满足一种半分解的酶不平等性。提出了新的算法,用于对湿潮和干燥过程进行现实的模拟。为评估该方法的性能表现提供了已知基准的量化实例。