In this paper, we consider numerical approximations for solving the inductionless magnetohydrodynamic (MHD) equations. By utilizing the scalar auxiliary variable (SAV) approach for dealing with the convective and coupling terms, we propose some first- and second-order schemes for this system. These schemes are linear, decoupled, unconditionally energy stable, and only require solving a sequence of differential equations with constant coefficients at each time step. We further derive a rigorous error analysis for the first-order scheme, establishing optimal convergence rates for the velocity, pressure, current density and electric potential in the two-dimensional case. Numerical examples are presented to verify the theoretical findings and show the performances of the schemes.
翻译:在本文中,我们考虑了解决无诱导磁力动力学(MHD)方程式的数字近似值。通过使用标量辅助变量(SAV)处理对流和组合条件,我们为这个系统提出了一些第一和第二级计划。这些计划是线性、脱钩、无条件能源稳定,只需要在每一个步骤中用恒定系数解决一系列差异方程式。我们进一步得出了对一级计划的严格错误分析,为二维情况下的速度、压力、当前密度和电潜能确定了最佳趋同率。我们提供了数字实例,以核实理论结论并展示这些计划的绩效。