Bar charts are an effective way for humans to convey information to each other, but today's algorithms cannot parse them. Existing methods fail when faced with minor variations in appearance. Here, we present DVQA, a dataset that tests many aspects of bar chart understanding in a question answering framework. Unlike visual question answering (VQA), DVQA requires processing words and answers that are unique to a particular bar chart. State-of-the-art VQA algorithms perform poorly on DVQA, and we propose two strong baselines that perform considerably better. Our work will enable algorithms to automatically extract semantic information from vast quantities of literature in science, business, and other areas.
翻译:条形图表是人类相互传递信息的有效方式, 但今天的算法无法分析它们。 现有方法在面对面貌的微小变化时失败了。 在这里, 我们提供DVQA, 这是一个在回答问题的框架内测试条形图理解的许多方面的数据集。 与视觉问题回答( VQA ) 不同, DVQA 需要处理特定条形图特有的单词和答案。 州级VQA 算法在DVQA 上表现不佳, 我们提出了两个效果更好的强势基线。 我们的工作将使算法能够自动从大量科学、商业和其他领域的文献中提取语义信息。