Bar charts are an effective way for humans to convey information to each other, but today's algorithms cannot parse them. Existing methods fail when faced with minor variations in appearance. Here, we present DVQA, a dataset that tests many aspects of bar chart understanding in a question answering framework. Unlike visual question answering (VQA), DVQA requires processing words and answers that are unique to a particular bar chart. State-of-the-art VQA algorithms perform poorly on DVQA, and we propose two strong baselines that perform considerably better. Our work will enable algorithms to automatically extract semantic information from vast quantities of literature in science, business, and other areas.


翻译:条形图表是人类相互传递信息的有效方式, 但今天的算法无法分析它们。 现有方法在面对面貌的微小变化时失败了。 在这里, 我们提供DVQA, 这是一个在回答问题的框架内测试条形图理解的许多方面的数据集。 与视觉问题回答( VQA ) 不同, DVQA 需要处理特定条形图特有的单词和答案。 州级VQA 算法在DVQA 上表现不佳, 我们提出了两个效果更好的强势基线。 我们的工作将使算法能够自动从大量科学、商业和其他领域的文献中提取语义信息。

8
下载
关闭预览

相关内容

视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务。这一任务的定义如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻译为中文:一个VQA系统以一张图片和一个关于这张图片形式自由、开放式的自然语言问题作为输入,以生成一条自然语言答案作为输出。简单来说,VQA就是给定的图片进行问答。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
Arxiv
3+阅读 · 2018年11月29日
Arxiv
5+阅读 · 2018年3月16日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
Top
微信扫码咨询专知VIP会员